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Abstract

In this paper, we present a method to analyse the dynamic and steady response of non-homogeneous composite

materials. Di�ering from the existing works reported in literature, the present method can be used for arbitrarily
varying material properties through thickness direction and the crack number can be larger than one. It is assumed
that the composite material is orthotropic and all the material properties depend only on the coordinates y (along

the thickness direction). The material non-homogeneity is simulated by dividing the plate into a number of layers,
each layer is assigned slightly di�erent material properties. The method is based upon the Fourier and Laplace
transforms to reduce the boundary value problem to a system of generalized singularity integral equations in the
Laplace transform domain. The singular integral equations for the problem are derived and numerically solved by

weighted residual value methods. By utilized numerical Laplace inversion the time-dependent full ®eld solutions are
obtained. As the numerical illustrates, three di�erent cracked specimens, a functionally graded material, a metal-
ceramic joint with functionally graded interlayer, and a metal substrate/functionally graded ®lm structure are

presented for various material non-homogeneity parameters and/or functionally graded layer thickness. The results
obtained demonstrate that the present model is an e�cient tool in the fracture analysis of composite materials with
properties varying in the thickness direction. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-homogeneous composites are of considerable technical and engineering importance. These
materials have properties that vary as a function of position in the body. Composite materials such as
Functionally Graded Materials (FGMs) have continuously varying properties. Other classes of materials
such as laminates possess non-homogeneity of discontinuous nature. The material properties in one
lamina may be di�erent from another although each of the lamina may still be homogeneous.
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There are uncertainties arising from voids and defects that are introduced in the composite during
manufacturing. Even a small quantity of mechanical imperfections can cause a marked in¯uence on the
composite strength. The fracture mechanical analysis, especially the dynamic fracture analysis of the
non-homogeneous material with multi-cracks is necessary. Analysis of the overall mechanical properties
of the non-homogeneous composites has been developed to an advanced level. But when fracture of
these materials is investigated and exact strongly non-uniform stress distribution is required, the non-
homogeneity essentially complicates the analysis. For composites with continuously varying material
properties, it is often conventional to take the properties to be some certain assumed functions of space
variable, for examples, exponential functions (Erdogan, 1985; Delale and Erdogan, 1988a, b; Ozturk and
Erdogan, 1993, 1995, 1996), power-law type functions (Hata, 1985). Such idealizations o�er considerable
amount of simpli®cations to the analysis and leads to the system di�erential equations remaining
formally the same with constant coe�cients. But Zuiker has pointed out that certain assumed property
distributions presented in the literature must be used with care as they are not physically realizable for
certain material distributions (Zuiker, 1995). For composites with discontinuous varying materials
properties such as multi-layers, an approximate discrete model was employed to study the steady state
crack propagation (Slepyan, 1974). Another way to avoid di�culties arising in the study of fracture of
the multilayered laminates is to use models with a reduced number of layers (Chen and Sih, 1971;
Ashbaugh, 1973). In that work multilayered composite is replaced by a three-layered system where the
cracked layer of one material is sandwiched between two half-spaces of the second material. Employing
for such models with a reduced number of layers is possible only in the special case of `short' loading
when the characteristic layer thickness su�ciently exceeds the length parameter associated with the load
distribution (Ryvkin, 1996).

An investigation of the stress ®eld near the crack tip in a multilayered composite consisting of layers
with the ratio of the crack length to the characteristic layer thickness is not too small leads to the
necessity of introducing models with a large number of layers. For materials with properties
continuously varying but not according to exponential law or power-law, a new model is necessary. In
this paper, we ®rst divided the elastic region into a number of layers of in®nite length and the material
properties are taken to be constants for each layer, then utilizing the Laplace transform and Fourier
transform technique to get the general solutions of the displacements for each layer. The complete
solution of the entire elastic region is then obtained through introducing layer interface conditions and
the mechanical boundary condition via the ¯exibility/sti�ness matrix approach. Attention is focused on
the time-dependent full ®eld solutions of stress, stress intensity factor and strain energy release rate. As
the numerical illustrations, the dynamic stress intensity factors for three di�erent cracked specimens with
functionally graded layer under sudden applied stress on crack faces are presented for various material
non-homogeneous parameters and graded layer thickness.

2. Formulation of the problem

Consider a non-homogeneous material of height h with properties that vary as a function of
coordinate y (Fig. 1). The length of x-direction is in®nite. (x, y, z ) is global coordinate system. In order
to simulate material non-homogeneity in y-direction, divide the elastic plate into N layer elements of
in®nite length (for laminate, each layer may be further divided into some sub-layers). The material
properties are taken to be constant for each layer. The main axes of elasticity are parallel to x-axis and
y-axis. For the Jth strip, the density is rJ, thickness is hJ (throughout the paper the subscript J is
associated with the Jth layer, counted up from the lower surface, the subscript j denotes the interface
number between the Jth layer and the �J� 1�th layer). The local coordinate system �xJ, yJ, zJ� is related
to global coordinate by:
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xJ � x, yJ � yÿ
XJÿ1
L�1

hL, zJ � z: �1�

Denote the interlamina stress �sy�j and �txy�j as sj�x, t� and tj�x, t�. The adjacent two layers are perfectly
bonded or with a crack. The crack length is 2aj, crack center locate in the position of xj � cj. The initial
displacement and velocity are zero, the boundary conditions are:

1. The applied stresses in crack faces are

sj�x, t� � s0j�x, t� tj�x, t� � t0j�x, t� cj ÿ aj < x < cj � aj: �2�
2. The stress on upper and lower surface of the composite plate are zero.
3. The stress and displacement is zero at in®nity.

Under plane strain, for orthotropic material, the only non-zero displacement and stress ®eld is

�Ux �J � uJ�x, yJ, t�
ÿ
Uy

�
J
� vJ�x, yJ, t� �3a�

�sx �J � �C11 �J
@uJ
@x
� �C12 �J

@vJ
@yJ

�sy �J � �C12 �J
@uJ
@x
� �C22 �J

@vJ
@yJ

�txy �J � �C66 �J
�
@uJ
@yJ
� @vJ
@x

�
�3b�

where �Cmn�J �m, n � 1, 2, 6� are sti�ness coe�cients for the Jth layer. Under small deformation, the
equation of motion requires the satisfaction of the following wave equation

Fig. 1. The geometry and coordinates of non-homogeneous composite plate.
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�C11 �J
@2uJ
@x2
� �C66 �J

@2uJ
@y2J
� �C12 � C66 �J

@2vJ
@x@yJ

� rJ
@2uJ
@t2

�C66 �J
@2vJ
@x2
� �C22 �J

@2vJ
@y2J
� �C12 � C66 �J

@2uJ
@x@yJ

� rJ
@2vJ
@ t2

: �4a�

Referring to the following non-dimensional variable

�x � x=h �yJ � yJ=h �hJ � hJ=h �a j � aj=h �c j � cj=h �4b�
and the wave velocity:

CaJ �
��������������������
�C22�J=rJ

p
CbJ �

��������������������
�C66 �J=rJ

p
: �4c�

Applying the Laplace transform over the time variable t, from (4a), we have�
C11

C66

�
J

@2u�J
@ �x2
� @

2u�J
@ �y2

J

�
�
1� C12

C66

�
J

@2v�J
@ �x@ �yJ

�
�

ph

CbJ

�2

u�J

�
C66

C22

�
J

@2v�J
@ �x2
� @

2v�J
@ �y2

J

�
�
C66 � C12

C22

�
J

@2u�J
@ �x@ �yJ

�
�

ph

CaJ

�2

v�J �4d�

where the superscript � denotes the Laplace transform with the parameter of the transformation denoted
by p. Using Fourier transform to the space variable x, eqn (4d) may be solved to give the displacement
in each layer of the material:8><>:

u�J
ÿ

�x , �yJ, p
�

v�J
ÿ

�x , �yJ, p
�

i

9>=>; � h

2p

��1
ÿ1

�
eJ
ÿ

�yJ, p
��
8>><>>:
A1J�s, p�
B1J�s, p�
A2J�s, p�
B2J�s, p�

9>>=>>; eÿis �x ds: �5a�

In which A1J, B1J, A2J, B2J are unknowns to be determined, i � �������ÿ1p
,

�
eJ� �yJ; p�

� � � eÿSl1J �y J eSl1J �y J eÿSl2J �y J eSl2J �y J

ÿZ1J eÿSl1J �y J Z1J eSl1J �y J ÿZ2J eÿSl2J �y J Z2Je
Sl2J �y J

�
, �5b�

and, liJ �i � 1, 2� are the roots of the following characteristic equation:

l4iJ ÿ
"�

C11C22 ÿ 2C12C66 ÿ C 2
12

C22C66

�
J

�
�

ph

sCaJ

�2

�
�

ph

sCbJ

�2
#
l2iJ

�
"�

C11

C22

�
J

�
�

ph

sCaJ

�2
#"

1�
�

ph

sCbJ

�2
#
� 0,

�5c�

while ZiJ�i � 1, 2� are:

ZiJ �
�C11�J=�C66 �J��ph=sCbJ�2ÿl2iJ

liJ
ÿ
1� �C12 �J=�C66 �J

� : �5d�
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Substitution of eqn (5a) into (3b) gives the stress �s�j � �x , p�, t�j � �x , p�� at � �yJ � �hJ� and
�s�jÿ1� �x , p�, t�jÿ1� �x , p�� at ( �yJ � 0):8>>>>><>>>>>:

s�j � �x , p�=i
t�j � �x , p�

s�jÿ1� �x , p�=i
t�jÿ1� �x , p�

9>>>>>=>>>>>;
� 1

2p

��1
ÿ1

s
�
KJ�s, p�

�
8>>>>><>>>>>:

A1J�s, p�
B1J�s, p�
A2J�s, p�
B2J�s, p�

9>>>>>=>>>>>;
eÿis �x ds �6a�

where

�
KJ�s, p�

� �
26666664

ÿ
l1JZ1J�C22 �Jÿ�C12 �J

�
eÿsl1J �h J

ÿ
l1JZ1J�C22�Jÿ�C12�J

�
esl1J

�h Jÿÿ l1J ÿ Z1J
��C66�J eÿsl1J �h J

ÿ
l1J � Z1J

��C66 �J esl1J
�h J

l1JZ1J�C22�Jÿ�C12�J l1JZ1J�C22 �Jÿ�C12 �Jÿÿ l1J ÿ Z1J
��C66 �J

ÿ
l1J � Z1J

��C66 �J

ÿ
l2JZ2J�C22 �Jÿ�C12 �J

�
eÿsl2J �h J

ÿ
l2JZ2J�C22 �Jÿ�C12 �J

�
esl2J

�h Jÿÿ l2J ÿ Z2J
��C66 �J eÿsl2J �h J

ÿ
l2J � Z2J

��C66 �J esl2J
�h J

l2JZ2J�C22 �Jÿ�C12 �J l2JZ2J�C22 �Jÿ�C12 �Jÿÿ l2J ÿ Z2J
��C66�J

ÿ
l2J � Z2J

��C66 �J

3777775 �6b�

�
KJ�s, p�

�ÿ1� �Da
J�s, p�,Da

J�s, p�
� �6c�

in which �Da
J�s, p�� and �Db

J�s, p�� are matrices having four rows and two columns each. Applying inverse
Fourier transform to (6a) yields �A1J, B1J, A2J, B2J� in terms of vector �s�j , t�j , s�jÿ1, t�jÿ1�. The
displacements in each layer can thus be determined in terms of �s�j , t�j , s�jÿ1, t�jÿ1� by substituting
�A1J, B1J, A2J, B2J� back into (5a)8><>:

u�J
ÿ
�r , �yJ, p

�
v�J
ÿ
�r , �yJ, p

�
i

9>=>; � h

2p

��1
ÿ1

1

s

�
eJ
ÿ

�yJ, p
����

Da
J�s, p�

��
Db

J�s, p�
��

( ��1
ÿ1

s�j � �x , p�
i

eis �xd �x

��1
ÿ1

t�j � �x , p� eis �xd �x

��1
ÿ1

s�jÿ1� �x , p�
i

eis �x d �x

��1
ÿ1

t�jÿ1� �x , p� eis �xd �x

)T

eÿis�r ds:

�7�

3. Singular integral equations

By introducting the following dislocation density function
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fxj� �x , p� �
@u�J�1

ÿ
�x , �yj�1 � 0, p

�
@x

ÿ @u
�
J

ÿ
�x , �yJ � �hJ, p

�
@x

fyj� �x , p� �
@v�J�1

ÿ
�x , �yj�1 � 0, p

�
@x

ÿ @v
�
J

ÿ
�x , �yJ � �hJ, p

�
@x

: �8�

Under the single-valueness of the displacement along the interface, if the interface between the Jth
and the �J� 1�th layer is perfectly bonded then fxj and fyj are zeros, if there is a crack between the Jth
and the �J� 1�th layer then

fxj� �x , p� � fyj� �x , p� � 0 �x > �c j � �aj or �x< �c j ÿ �aj �9a�

� �c j� �a j

�c jÿ �a j

fxj� �x , p� d �x �
� �c j� �a j

�c jÿ �a j

fyj� �x , p� d �x � 0: �9b�

Substituting of (7) into (8) gives�
fxj��r , p�
fyj��r , p�=i

�
� 1

2p

��1
ÿ1

ÿ�L�j �M�j �N�j� eÿis�r ds

�
��1
ÿ1

n
s�jÿ1� �x � it�jÿ1� �x � s�j � �x � it�j � �x � s�j�1� �x � it�j�1� �x �

oT
eis �x d �x �10a�

where�
L�s, p�

�
j
� �eJÿ �hJ, p

���
Db

J�s, p�
�
,
�
N�s, p�

�
j
� ÿ�eJ�1�0, p���Da

J�1�s, p�
�
,

�
M�s, p�

�
j
� �eJÿ �hJ, p

���
Da

J�s, p�
�ÿ �eJ�1�0, p���Db

J�1�s, p�
�
: �10b�

The Fourier transform of (10a) gives

ÿ�L�j �M�j �N�j� ��1
ÿ1

n
s�jÿ1� �x � it�jÿ1� �x � s�j � �x � it�j � �x � s�j�1� �x � it�j�1� �x �

oT
eis �x d �x

�
� �c j� �a j

�c jÿ �a j

�
fxj��r , p�
fyj��r , p�=i

�
eis�r d�r : �10c�

De®ning the following two vectors of 2�Nÿ 1� rows each

�
F�s, p�	 �

(� �c 1� �a 1

�c 1ÿ �a 1

fx1 eis�r d �r

� �c 1� �a 1

�c 1ÿ �a 1

fy1

i
eis�r d�r , . . . ,

� �c Nÿ1� �aNÿ1

�c Nÿ1ÿ �aNÿ1
fx�Nÿ1� eis�r d�r

� �cNÿ1� �aNÿ1

�cNÿ1ÿ �aNÿ1

fy�Nÿ1�
i

eis�r d�r

)T
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�
T� �x , p�	 � �s�1 it�1 , . . . , s�Nÿ1 it�Nÿ1

	T
, �11�

and utilizing the traction free condition of the exterior surface of the composite plate, from (10c) we
have

�
D�s, p�� ��1

ÿ1

�
T� �x , p�	 eis �x d �x � �F�s, p�	: �12a�

In which, the ¯exibility matrix �D�s, p�� and its inversion (i.e. the sti�ness matrix K�s, p�) are

�
D�s, p�� �

26666664
M1 N1

L2 M2 N2

. .
.

LNÿ2 MNÿ2 NNÿ2
LNÿ1 MNÿ1

37777775;
�
D�s, p��ÿ1� �K�s, p��: �12b�

Applying the inverse Fourier transform to (12a) yields

�
T� �x , p�	 � 1

2p

��1
ÿ1

�
K�s, p��F�s, p� eÿis �x ds: �13�

This is the relationship between interfacial stress and dislocation density function, and there are 2�Nÿ 1�
equations in it. For those interfaces with no crack, the dislocation density function is zero, so the number
of equations needed to be solved is twice the crack number. Referring to variable K n

m�s, p�, which denote
the mth row and the nth column in matrix �K�s, p��, one can rewrite (13) as

(
s�j � �x , p�
it�j � �x , p�

)
� 1

2p

XNÿ1
k�1

� �c k� �a k

�c kÿ �a k

0B@��1
ÿ1

24K
�2kÿ1�
�2jÿ1� �s, p� K

�2k�
�2jÿ1��s, p�

K
�2kÿ1�
�2j� �s, p� K

�2k�
�2j� �s, p�

35eis��rÿ �x � ds

1CA( fxk��r �
fyk��r �=i

)
d�r : �14�

To investigate and to separate a singular part of the kernel in (14), the asymptotic behavior of the
elements in matrix �K�s, p�� for jsj41 must be examined. For the interface with no crack, since the
dislocation density function is zero, one only needs to analyze the elements related to the cracked
interfaces. If material properties are not continuous along the cracked plane, the local stress behave in
an oscillatory nature which leads to interpenetrating of material points of the crack surface (Williams,
1959), such a condition cannot be realized physically and is outside the scope of this paper. We only
consider the special case of continuously varying material properties along the cracked plane (however,
the material properties may not be continuous along the uncracked interface).

As jsj41 the only non-zero elements in �K�s, p�� are

K
�2j�
�2jÿ1��1, p� � lim

s421K
�2j�
�2jÿ1��s, p� �

sgn�s�
2

ÿ
Gy

�
j

�15a�

K
�2jÿ1�
�2j� �1, p� � lim

s421K
�2jÿ1�
�2j� �s, p� �

sgn�s�
2
�Gx �j �15b�

where
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�Gx�j �
ÿ�C11 �J � �C12 �Jl1J2

�ÿ�C11 �J � �C12 �Jl2J2
��C66�J

�C11 �J
ÿ�C12 �J � �C66�J

��l1J � l2J�
,
ÿ
Gy

�
j
� �Gx �j

l1Jl2J
�15c�

in which l1J, l2J are roots of characteristic eqn (5c) in the case of jsj41
By de®ning �k

n

m�s, p� � knm�s, p� ÿ knm�1, p� and employing the Fourier representation of a generalized
function (Gradshteyn and Ryzhik, 1965)��1

ÿ1

sgn�s�
2

eis��rÿ �x � ds � i

��r ÿ �x � , �16�

one can express (14) as follows

(
s�j � �x , p�
it�j � �x , p�

)
� 1

2p

XNÿ1
k�1

� �c k� �a k

�c kÿ �a k

0BB@��1ÿ1
264 �k �2kÿ1��2jÿ1� �s, p� �k

�2k�
�2jÿ1��s, p�

�k
�2kÿ1�
�2j� �s, p� �k

�2k�
�2j� �s, p�

375 eis� �rÿ �x � ds

1CCA
(

fxk��r �
fyk��r=i�

)
d�r

�

8>>>>><>>>>>:

ÿ
Gy

�
j

2p

� �c j� �a j

�c jÿ �a j

fyj��r �
�r ÿ �x

d�r

�Gx �j
2p

� �c j� �a j

�c jÿ �a j

fxj��r �i
�r ÿ �x

d�r

9>>>>>=>>>>>;
:

�17�

As �k
n

m�s, p� is odd function of s when m� n equal odd number, and even function of s when m� n
equal even number. Eqn (17) may be further simpli®ed to

(
s�j � �x , p�
t�j � �x , p�

)
� 1

p

XNÿ1
k�1

� �c k� �a k

�c kÿ �a k

0BB@��1
0

264 �k
�2kÿ1�
�2jÿ1� �s, p� cos s� �r ÿ �x � �k

�2k�
�2jÿ1��s, p� sin s� �r ÿ �x �

�k
�2kÿ1�
�2j� �s, p� sin s� �r ÿ �x � ÿ �k

�2k�
�2j� �s, p� cos s� �r � �x �

375 ds

1CCA
(
fxk� �r �
fyk� �r �

)
d �r �18�

�

8>>>>><>>>>>:

ÿ
Gy

�
j

2p

� �c j� �a j

�c jÿ �a j

fyj� �r �
�r ÿ �x

d �r

�Gx �j
2p

� �c j� �a j

�c jÿ �a j

fxj� �r �i
�r ÿ �x

d�r

9>>>>>=>>>>>;
:

Referring to the following non-dimensional parameters

�r j �
ÿ
�r ÿ �c j

�
= �aj �xj �

ÿ
�x ÿ �c j

�
= �aj �19a�

jxj

ÿ
�r j, p

� � fxj

ÿ
�a j �r j � �c j, p

�
jyj

ÿ
�r j, p

� � fyj

ÿ
�aj �r j � �c j, p

� �19b�

�
hjk
ÿ
p, �rk, �xj

�� � �ak

��1
0

264 �k
�2kÿ1�
�2jÿ1� �s, p� cos s��r ÿ �x � �k

�2k�
�2jÿ1��s, p� sin s��r ÿ �x �

�k
�2kÿ1�
�2j� �s, p� sin s��r ÿ �x � ÿ �k

�2k�
�2j� �s, p� cos s��r � �x �

375 ds: �19c�
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Eqn (18) may be re-written as

(
s�j � �x , p�
t�j � �x , p�

)
� 1

p

XNÿ1
k�1

�1
ÿ1

�
hjk
ÿ
p, �rk, �xj

��(jxk��rk �
jyk��rk �

)
d�rk �

8>>>><>>>>:

ÿ
Gy

�
j

2p

�1
ÿ1

jyj

ÿ
�r j
�

�r j ÿ �xj
d�r j

�Gx�j
2p

�1
ÿ1

jxj

ÿ
�r j
�

�r jÿ �xj
d�r j

9>>>>=>>>>;: �20�

The integral bhjk��rk, �xj �c is a Fredholm kernel which is bounded for all values of �rk and �xj in the
closed interval �ÿ1, 1�.

4. Solution of the singular integral equations

It can be seen that eqn (20) provides the expression for (s�j ,t
�
j ) outside as well as inside the crack. In

the case of inside the crack, it is an ordinary sigular integral equation having a simple Cauchy-type
kernel 1=��r j ÿ �xj � as the dominant singular part. With the Cauchy-type kernel in (20) being the sole
contribution to the dislocation density functions jxj��r j, p� and jyj��r j, p�, the crack-tip behavior can be
characterized by standard square-root singular such that (Muskhelishvili, 1953)

jxj

ÿ
�r j, p

� � gxj
ÿ
�r j, p

�
=
�������������
1ÿ �r2j

q
; jyj

ÿ
�r j, p

� � gyj
ÿ
�r j, p

�
=
�������������
1ÿ �r2j

q
: �21�

The integral eqn (20) is thus solved numerically by noting that its fundamental function corresponds
to the weight function of the Chebyshev polynomial of the ®rst kind Tm��r j �. The unknown functions
�gxj, gyj � can therefore be expressed as

�gxj, gyj � �
X1
m�1

�
C x

jm�p�, C y
jm�p�

�
Tm

ÿ
�r j
� �22�

where �C x
jm�p�, C y

jm�p�� are the unknowns to be evaluated. It is observed that the compatibility condition
(9b) is identically satis®ed by the above expansion. After substituting (22), truncated with the ®rst M
terms in it, into (20) and using the integral formulas (Gradshteyn and Ryzhik, 1965)

1

p

�1
ÿ1

Tm

ÿ
�r j
�

ÿ
�r j ÿ �xj

� �������������
1ÿ �r2j

q d �r j �

8>>>>>><>>>>>>:

Umÿ1
ÿ

�xj

�
m e 1 j �xjj < 1

ÿ sgn
ÿ

�xj

���������������
�x2
j ÿ 1

q �
�xj ÿ sgn

ÿ
�xj

� ��������������
�x2
j ÿ 1

q �m
m e 0 j �xjj > 1,

0 m � 0 j �xjj < 1

�23�

we have8<:s�j
ÿ

�a j �xj � �c j, p
�

t�j
ÿ

�a j �xj � �c j, p
�
9=; �XNÿ1

k�1

XM
m�1

h
V km

j

ÿ
�xj

�i(C x
km�p�

C
y
km�p�

)

�
24 0

ÿ
Gy

�
j
=2

�Gx �j=2 0

35XM
m�1

Umÿ1
ÿ

�xj

�(C x
jm�p�

C
y
jm�p�

) �24a�
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where Umÿ1� �xj � is Chebyshev polynomial of the second kind and V km
j � �xj � ish

V km
j
� �x �j

i
� 1

p

�1
ÿ1

�
hjk
ÿ
�rk, �xj, p

��
Tm��rk ��������������

1ÿ �r 2k

q d�rk: �24b�

The crack open displacement �u��jÿ � �x , p�, v��jÿ � �x , p�� can be evaluated from (8) and (9a) as�
u��jÿ � �x , p�,v��jÿ � �x , p�

�
� h

� �x

�c jÿ �a j

ÿ
fxj��r , p�,fyj��r , p�

�
dr �

� �x j

ÿ1

ÿ
jxj

ÿ
�r j, p

�
,jyj

ÿ
�r j, p

��
d�r j: �25a�

Substituting (21) and (22) into the above expression yields

�
u��jÿ � �x , p�,v��jÿ � �x , p�

�
� ÿaj

XM
m�1

�
C x

jm�p�, C y
jm�p�

�sin
ÿ
m arcos �xj

�
m

; j �xjj < 1: �25b�

The traction boundary condition (2) require �s�j �x, p�, t�j �x, p�� � �s�0j�x, p�, t�0j�x, p��, this can be
satis®ed by�1

ÿ1

h
s�j
ÿ

�aj �xj � �c j, p
�ÿ s�0j

ÿ
�aj �xj � �c j, p

�i
du��jÿ

ÿ
�a j �xj � �c j, p

�
d �xj � 0

�1
ÿ1

h
t�j
ÿ

�aj �xj � �c j, p
�ÿ t�0j

ÿ
�a j �xj � �c j, p

�i
dv��jÿ

ÿ
�aj �xj � �c j, p

�
d �xj � 0: �26�

In which d is the variation sign. The integral eqn (20) can be recast into a system of linear algebraic
equations by substituting (24a) and (25a) into (26)

XNÿ1
k�1

XM
m�1

h
Rkm

jn �p�
i(C x

km�p�
C

y
km�p�

)
�

2664 0
p
4

ÿ
Gy

�
j

p
4
�Gx�j 0

3775
(
C x

jm�p�
C

y
jm�p�

)
�
(
Q

y
jn

Qx
jn

)

� j � 1, 2, . . . , Nÿ 1 n � 1, 2, . . . , M� �27a�
whereh

Rkm
jn �p�

i
�
�1
ÿ1

h
V km

j

ÿ
�xj, p

�i
sin

ÿ
n arcos �xj

�
d �xj �27b�

�
Q

y
jn Qx

jn

�
�
�1
ÿ1

s�0j
ÿ

�aj �xj � �c j, p
�

t�0j
ÿ

�a j �xj � �c j, p
�

sin
ÿ
n arcos �xj

�
d �xj: �27c�

If the crack faces are loaded by concentrated shearing force Fxj�t�, and/or concentrated compressing
force Fyj�t� at the position of �xj � �xj0, we have�

Q
y
jn�p�, Qx

jn�p�
�
� ÿF �yj�p�, F �xj�p�� sin

ÿ
n arcos �xj0

�
: �27d�

Once the coe�cients �C x
jm�p�, C y

jm�p�� are obtained, the numerical solution of the integral eqn (20) can

B.L. Wang et al. / International Journal of Solids and Structures 37 (2000) 1251±12741260



be calculated from (21) and (22). The displacements in the Laplace transform domain can be obtained
from (24a) and (7).

Upon evaluating �C x
jm�p�, C y

jm�p�� from (27a), it can be seen from (20)±(23) that the mode I and mode
II stress intensity factors can be calculated as

�K �I �j � �
������������������������������
2��cj ÿ aj � ÿ x�

p
�x4�cjÿaj � ÿ s�j � �x , p� �

ÿ
Gy

�
j

����
aj
p

2

XM
m�1
� ÿ 1�mC y

jm�p�

�K �II�j � �
������������������������������
2��cj ÿ aj � ÿ x�p �x4�cjÿaj � ÿ t�j � �x , p� �

�Gx�j ����
aj
p

2

XM
m�1
� ÿ 1�mC x

jm�p�: �28a�

For the left-hand side crack-tip and

�K �I �j � �
������������������������������
2��cj ÿ aj � ÿ x�

p
�x4�cj�aj � � s�j � �x , p� � ÿ

ÿ
Gy

�
j

����
aj
p

2

XM
m�1

C
y
jm�p�

�K �II�j � �
������������������������������
2��cj ÿ aj � ÿ x�p �x4�cj�aj � � t�j � �x , p� � ÿ

�Gx �j ����
aj
p

2

XM
m�1

C x
jm�p�: �28b�

For the right-hand side crack-tip.
After the solutions in the Laplace transform plane are obtained, we must use the inverse Laplace

transform to get the solutions in the time domain. It is very di�cult to make analytical inversions, and
therefore numerical inversion is practical and useful. Although there are a number of numerical
methods, the one used here is due to Miller and Guy (1966) which has been widely used in fracture
dynamics (Fan, 1990; Jin and Noda, 1994).

Referring to the coe�cients �C 0x
jm�t�, C 0y

jm�t�� which denote the inverse Laplace transform of
�C x

jm�p�, C y
jm�p�� in the case of slowly loading, the problem is quasi-static, we may compute the energy

release rates for the right-hand side crack-tip by virtual crack close technique

�GI�t��j�
1

2
lim
D �a40

1

D �a

�D �a

0

s0j
ÿ

�x � �c j � �aj, t
�
v�jÿ
ÿ

�x � �c j � �aj ÿ D �a , t
�

d �x �
p
ÿ
Gy

�
j
aj

8

"XM
m�1

C
0y
jm�t�

#2

�GII�t��j�
1

2
lim
D �a40

1

D �a

�D �a

0

t0j
ÿ

�x � �c j � �aj, t
�
u�jÿ
ÿ

�x � �c j � �aj ÿ D �a , t
�

d �x � p�Gx �jaj
8

"XM
m�1

C 0x
jm�t�

#2

�29a�

and the energy release rates for the left-hand side crack-tip can be calculated as

�GI�t��j�
p
ÿ
Gy

�
j
aj

8

"XM
m�1
� ÿ 1�mC 0y

jm�t�
#2

; �GII�t��j�
p�Gx �jaj

8

"XM
m�1
� ÿ 1�mC 0x

jm�t�
#2

: �29b�

The relationship between the stress intensity factor and energy release rate can be evaluated from (28)
and (29)
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�GI�t��j�
p

2
ÿ
Gy

�
j

�KI�t��2j �GII�t��j�
p

2�Gx�j
�KII�t��2j : �30a�

The total energy release rate is

�G�t��j � �GI�t��j � �GII�t��j �
p
2

0@ �KI�t��2jÿ
Gy

�
j

� �KII�t��2j
�Gx�j

1A: �30b�

5. Numerical examples and discussion

The approach outlined in the foregoing is employed to investigate the response of three di�erent
specimens with functionally graded layer. The specimen geometry and crack position are shown in Fig.
2. The ®rst specimen is a functionally graded material with a crack of length 2a � h in the center, and
the second, a metal-ceramic joint with functionally graded interlayer, each of the interfaces contains a
crack of equal length. The third specimen is a metal substrate/functionally graded ®lm structure with a
®xed substrate thickness hm � 4a.

The functionally graded layer are metal/ceramic composite. The metal phase and ceramic phase are
taken as A1 and A12O3. The properties of metal and ceramic are

Al: Em � 69 Gpa nm � 0:33 rm � 2700 Kg=m3 �31a�

Fig. 2. Specimens geometry considered, (A) a functionally graded material with a crack of length 2a � h, (B) a metal-ceramic joint

with functionally graded interlayer, the dimension is ®xed as hc � hg � hm, and (C) a substrate-®lm structure with a crack of a

length 2a � 0:25hm in the interface.
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Al2O3: Ec � 300 Gpa nc � 0:27 rc � 3900 Kg=m3 �31b�

in which E, r, n are elastic module, Poision's ratio and mass density, the subscript m and c denote metal
phase and ceramic phase, respectively. Using the properties given above, one can calculate the shearing
wave velocity Cm in metal A1 to be 98 m/s. In the analysis, the graded regions were treated as a series
of perfectly bonded composite layers, each layer being assigned slightly di�erent material properties
(however, the two layers adjacent to the cracked plane are taken to have the same material properties).
At any position y in the functionally graded ceramic/metal layer, the local volume fraction of metal is
assumed to be g�y� which can be used to characterize the coating gradation, g�y� can be any non-
singular, non-negative function of y. To gain insight into the e�ect of material gradation on the
dynamic stress intensity factors (SIFs) and strain energy release rates (SERRs), it is assumed that the
local volume fraction of metal g� y� obeys a power-law type relation

g� y� �

8>>>>><>>>>>:
0:5

1ÿ 0:5q

"
1ÿ

�
y

h

�q
#

q e 1

1ÿ 0:5

0:5q

�
y

h

�q

q < 1

�32a�

for functionally graded material specimen (A), and

g�y� � 1ÿ
�
yÿ hm
hg

�1=q

�32b�

for joint specimen (B) and substrate-®lm specimen (C).
In the above expression q is known as a gradient exponent or non-homogeneity parameter. From

(32a) one can see that for the functionally graded material specimen (a), the local volume fraction of
metal is always 50% at the position y � h=2 regardless of the q value. The expression (32b) implies that
the functionally graded layer has pure metal at the bottom surface and pure ceramic at the upper

Fig. 3. Composition gradients for several values of the gradient exponent q.
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surface of the layer. The composite pro®le for q values of 0.25, 0.5, 1, 2, and 4 are shown in Fig. 3. It is
clear that the total volume fraction of the functionally graded layer is metal rich for q < 1 and ceramic
rich for q > 1.

Relating g�y� to the local value of the `average' material properties of the composite is not a trivial
matter. To keep things simple, we choose an elementary `Law-of-mixtures' model, i.e.

E�y� � g�y�Em �
ÿ
1ÿ g�y��Ec v�y� � g�y�vm �

ÿ
1ÿ g�y��vc r�y� � g�y�rm �

ÿ
1ÿ g�y��rc: �33�

The rule expressed by (33) being known as a Voigt-type estimate. A more realistic expression would be
based on the micromechanics of composite. For example, micromechanics based `Mori±Tanaka' model
have been presented (Mori, 1987).

For the purpose of numerical illustration, assume that a sudden uniform stress is applied on the crack

Fig. 4. The in¯uence of divided layers number N on SIFs and SERRs for specimen (A), the gradient exponent q is ®xed as 1.
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faces. The related integrals are evaluated by using the Gauss-Chebyshev formulae. The calculated SIFs
and SERRs for the right-hand side crack-tip are carried out for three specimens.

5.1. Specimen (A), a functionally graded material

Specimen (A) is a functionally graded material with a crack of length 2a � h in the center. The load
condition is a sudden uniform compressing stress s0 on the crack faces. In order to simulate material
gradation along thickness direction, the material was divided into some layers (say N layers) in that
direction. The in¯uences of layers number N on SIFs and SERRs are depicted in Fig. 4 for a ®xed
gradient exponent q � 1. It is found that at any time of t SIFs and SERRs tend to converge to a steady
value as N becomes su�ciently large, this indicates that we can use the laminated composite plate model
to simulate the material non-homogeneity in the thickness direction. Hence, in the following, the divided

Fig. 5. The e�ect of gradient exponent, q, on SIFs and SERRs for specimen (A).
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layers number N is selected to be large enough for obtaining the solutions to the de®ned problem with a
required degree of accuracy.

Displayed in Fig. 5 is the in¯uence of gradient exponent q on the non-dimensional SIFs and SERRs
at di�erent time t. The following facts can be found from these ®gures. Firstly, under the range of q
considered, SIF tends to rise quickly as time increases. All the curves reach a peak and then decrease in

Fig. 6. The e�ect of gradient exponent, q, on SIFs induced by uniform compressing stress s0, the dimensions are ®xed as

2a � hc � hg � hm.
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magnitude. Secondly, the peak mode II SIFs and SERRs are more pronounced for higher q than for
lower q. Thirdly, although the geometry of the material is symmetrical with respect to the y � h=2 plane,
due to material non-homogeneity the stress state around the crack tips is one of mixed mode. It is also
found that the mode I SIFs is not highly sensitive to q values, the di�erences were more signi®cant for
mode II stress intensity factors.

5.2. Specimen (B), a metal±ceramic joint with a functionally graded interlayer

The joint contains a metal base and a ceramic base bonded by a functionally graded interlayer as
shown in Fig. 2(B). The load conditions are suddenly applying uniform compressing stress s0 on the
crack faces. Since the interaction between the cracks, the in¯uences of gradient function exponent q and
interlayer thickness hg on SIFs and SERRs are very complicated. Fig. 6 illustrates the e�ects of varying
the gradient function exponent q, for a ®xed crack length 2a � hc � hg � hm. Within the range of
exponents examined, the in¯uence of q is unimportant. Displayed in Fig. 7 is the energy release rate
with time for di�erent gradient exponents. Note that for this joint specimen with FGM interlayer the
e�ect of the non-homogeneity constraint q on the peak energy release rate is negligible.

Again let hc � hm � hg. Figs. 8 and 9 show the e�ect of joint thickness on SIFs and SERRs calculated
using a linear compositional pro®le �q � 1:0�. Results are displayed for KI, KII and G assuming
interlayer thickness of hg � 1:5a, hg � 2a, and hg � 3a. Within the range of hg examined, it seems that
as hg increase the peak values of SIFs and SERRs decrease. The same trends can also be seen from
Figs. 10 and 11 for steady SIFs and SERRs. These ®gures indicate that the stress intensity factors
and strain energy release rate are monotonically decreasing functions of hg, this is due to the fact that as
hg increased the global sti�ness of the medium is also increased. Furthermore, one can see that for
this two crack problem, at the right crack tip �x � �a�, KII are positive for crack between metal/

Fig. 7. The e�ect of gradient exponent, q, on SERRs induced by uniform compressing stress s0, the dimensions are ®xed as

2a � hc � hg � hm.
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FGM interface and negative for crack between ceramic/FGM interface, this indicates that the value of
KII are strongly dependent on the crack position.

5.3. Specimen (C), substrate-®lm structure

The specimen (C) contains a metal substrate and a functionally graded metal/ceramic ®lm. The

Fig. 8. The e�ect of joint thickness on dynamic SIFs induced by uniform compressing stress s0 with a ®xed gradient exponent

(q= 1.0).
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substrate thickness is taken to be equal to two times of crack length. The load condition is suddenly
applying uniform compressing stress s0 on crack faces. Figs. 12 and 13 display the in¯uence of varying
gradient exponent q on stress intensity factors and strain energy release rates, respectively. The assumed
®lm thickness hg is 0.25hm. Noting that within the range of exponents examined, as gradient exponent q
increases the peak SIFs KI (the dominant stress intensity factor) and SERRs decrease, this is due to the
fact that as the gradient exponent q increases the sti�ness of the ®lm also increases.

Illustrated in Figs. 14 and 15 are the e�ects of the ®lm thickness on the dynamic SIFs and SERRs,
respectively. All the curves are computed using a linear compositional pro®le �q � 1:0�. The assumed
®lm thickness is 0.75hm, 0.5hm and 0.25hm. It is found that for small ®lm thickness, increasing the
thickness of the ®lm reduces the dynamic mode I SIFs and SERRs. But when the thickness of the ®lm is
large enough the in¯uence of hg is negligible.

Figs. 16 and 17 show the in¯uence of ®lm thickness on static SIFs and SERRs. The following facts
can be found from these ®gures. Firstly, for small ®lm thickness, the mode I SIFs (the dominant stress
intensity factor) and SERRs are monotonically decreased functions of hg, while for larger ®lm thickness,
the in¯uence of hg is negligible. Secondly, as hg4 0, KI, KII and G are unbounded, as hg41, KI, KII

and G approach to some ®xed values, since the substrate thicknesses are not in®nite, the ®xed values are
not one for KI and zero for KII. Thirdly, regardless of the fact that in the neighborhood of the crack the
sti�ness of the medium increase in the +y direction, for small ®lm thickness, the sti�ness of ®lm is
smaller than that of the substrate and consequently the mode II stress intensity factors KII at the right
crack tip are negative, while for larger ®lm thickness the sti�ness of the ®lm is larger than that of the
substrate and consequently the mode II stress intensity factors KII at the right crack tip become positive.

Fig. 9. The e�ect of joint thickness on dynamic SERRs induced by uniform compressing stress s0, with a ®xed gradient exponent

(q= 1.0).
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6. Summary and conclusions

Non-homogeneous composite materials are potentially very attractive for a number of applications.
Many researchers, especially Erdogan and his coworkers, have carried out mechanics analyses for the
fracture behavior of these materials. The problem considered in this paper is that the response of a non-
homogeneous composite materials plate containing some non-collinear cracks subjected to dynamic

Fig. 10. The e�ect of joint thickness on steady state SIFs induced by uniform compressing stress s0, for di�erent gradient

exponent q.
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loading. In the analysis, the elastic region is divided into a number of layers of in®nite length. The
material properties are taken to be constants for each layer (however, the two layers adjacent to the
cracked plane are taken to have the same material properties). Three di�erent cracked specimens, a
functionally graded material, a metal±ceramic joint with functionally graded interlayer, and a metal
substrate/functionally graded ®lm structure are presented as numerical illustrations. From the numerical
examples, we found that the computing time is mainly dependent on the crack number, so we can divide

Fig. 11. The e�ect of joint thickness on steady state SERRs induced by uniform compressing stress s0, for di�erent gradient

exponent q.

Fig. 12. The e�ect of gradient exponent, q, on SIFs for specimen (C).
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Fig. 13. The e�ect of gradient exponent, q, on SERRs for specimen (C).

Fig. 14. The e�ect of ®lm thickness, hg, on dynamic SIFs for specimen (C) with a ®xed gradient exponent (q= 1.0).

Fig. 15. The e�ect of ®lm thickness, hg, on dynamic SERRs for specimen (C) with a ®xed gradient exponent (q= 1.0).
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the material into a larger number of layers to simulate material gradient. Di�ering from the existing
works reported in literature, the present method can be used for arbitrarily varying material properties
through thickness direction and the crack number can be larger than one.
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